{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"热轧无缝钢管经调质处理后,与轧态相比各尺寸参数均发生变化,导致下道加工工序无法正常进行或无法满足交货技术条件。通过对不同规格的样管在现场进行跟踪测量各项尺寸参数,分析数据后表明,对不同规格的钢管,热处理工序对尺寸变化的影响程度不同。轧制尺寸公差的合理控制能抵消因热处理而引起的附加尺寸变形,在轧制小规格无缝钢管时,壁厚按负公差控制,外径按公差中线控制;在轧制大口径厚壁无缝钢管时,外径应按负公差控制,壁厚按正公差控制,能使成品钢管各项尺寸参数达到最终标准要求。","authors":[{"authorName":"张旦天","id":"b161a776-0f8d-4506-8282-8b4dc06e5e79","originalAuthorName":"张旦天"},{"authorName":"杨永昌","id":"8b6f2df1-3ce6-4784-b759-5e715e79ed2d","originalAuthorName":"杨永昌"}],"doi":"","fpage":"18","id":"0f7bc862-e87a-4721-a458-d5ff11d71a64","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"bf9e617c-3c11-4177-9333-938d0872b442","keyword":"热轧无缝管","originalKeyword":"热轧无缝管"},{"id":"204aa727-0f3b-4e6a-bff1-d8e2139a1294","keyword":"热处理","originalKeyword":"热处理"},{"id":"d6ff4f28-6ea7-4f36-80bd-ade420d6b303","keyword":"尺寸变化","originalKeyword":"尺寸变化"}],"language":"zh","publisherId":"wlcs201202006","title":"热处理对无缝钢管尺寸变化的影响","volume":"","year":"2012"},{"abstractinfo":"研究了不同工艺热处理后对440C钢轴向尺寸变化规律,分析了尺寸变化机理,并提出了轴向尺寸变化率最小的热处理工艺参数.试验结果表明,退火和回火后试样轴向尺寸收缩,且随着退火和回火温度的升高,轴向尺寸的收缩量增大.淬火和冷处理后试样轴向尺寸增大,随着淬火温度的升高和冷处理前存放时间的延长,轴向尺寸伸长量减小.轴向尺寸伸长是马氏体相变引起的组织应力大于热应力所致;而热应力单独作用时导致轴向尺寸减小.推荐热处理工艺为163℃×2h去应力退火+850℃×1.5h退火+1050℃×15min淬火+16h后-75℃×2h冷处理+190℃×2h回火.","authors":[{"authorName":"王清","id":"3eeedd88-7967-4867-ab50-60d4cd4e562e","originalAuthorName":"王清"},{"authorName":"李波","id":"da11b591-afa2-486d-a1d5-1c19646ad739","originalAuthorName":"李波"},{"authorName":"孙东立","id":"e97936e2-50da-4c53-96c5-a1d081b8d2e9","originalAuthorName":"孙东立"},{"authorName":"武高辉","id":"5310f7cd-fd8c-49da-8ce9-6d98b592da08","originalAuthorName":"武高辉"},{"authorName":"刘学侃","id":"d1f3a268-2b77-4d25-b30b-6f0341eccb03","originalAuthorName":"刘学侃"},{"authorName":"王宏计","id":"9f872322-7922-4d4a-a25d-061022293278","originalAuthorName":"王宏计"},{"authorName":"唐雪明","id":"df10b2d3-f1d7-43a1-8f74-fde5c1782bdf","originalAuthorName":"唐雪明"}],"doi":"","fpage":"119","id":"83ada8cb-1bee-4356-b807-e421bac27117","issue":"3","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"7ddc13bb-68e6-4b21-b728-33200474b218","keyword":"440C钢","originalKeyword":"440C钢"},{"id":"15ee742b-86a2-46e8-b296-5b68f391b8a1","keyword":"热处理","originalKeyword":"热处理"},{"id":"2c76d244-1dcc-4582-8ed3-7b70d8dabed3","keyword":"尺寸变化","originalKeyword":"尺寸变化"}],"language":"zh","publisherId":"jsrclxb200903027","title":"440C钢管热处理轴向尺寸变化规律与工艺控制","volume":"30","year":"2009"},{"abstractinfo":"对单一先驱体、先驱体/惰性填料、先驱体/活性填料体系裂解陶瓷的尺寸变化进行了模型分析.从理论上分析了活性填料体积分数与裂解陶瓷体积收缩率和线收缩率之间的关系.揭示了活性填料的临界体积分数与活性填料反应的产率、反应前后的密度比之间的相关性.以聚碳硅烷先驱体为例.预测了在不同反应情况下,常见活性填料的临界体积分数.增加活性填料体积分数,可降低陶瓷产物的体积收缩率和气孔率.","authors":[{"authorName":"谢征芳","id":"67ad006c-0c0d-44cb-968d-9bdd582365fa","originalAuthorName":"谢征芳"},{"authorName":"陈朝辉","id":"4e9331bf-c78c-4e92-baa5-6d28cb09e0b2","originalAuthorName":"陈朝辉"}],"doi":"10.3321/j.issn:0412-1961.2002.04.023","fpage":"443","id":"f37b164e-c90e-4a10-b673-97003fe42d4e","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"ff140ede-8adf-429b-8cd0-d3ac4af2d790","keyword":"先驱体陶瓷.活性填料.惰性填料","originalKeyword":"先驱体陶瓷.活性填料.惰性填料"},{"id":"902f209b-83f5-47b5-8ecb-c1f759f7dbcd","keyword":"尺寸变化","originalKeyword":"尺寸变化"},{"id":"452ddf19-9626-431d-9e4e-e337aa63998e","keyword":"模型分析","originalKeyword":"模型分析"}],"language":"zh","publisherId":"jsxb200204023","title":"活性填料控制的先驱体裂解陶瓷的尺寸变化","volume":"38","year":"2002"},{"abstractinfo":"热轧无缝钢管经调质处理后,与轧态相比各尺寸参数均发生变化,导致下道加工工序无法正常进行或无法满足交货技术条件。通过对不同规格的样管在现场进行跟踪测量各项尺寸参数,分析数据后表明,对不同规格的钢管,热处理工序对尺寸变化的影响程度不同。轧制尺寸公差的合理控制能抵消因热处理而引起的附加尺寸变形,在轧制小规格无缝钢管时,壁厚按负公差控制,外径按公差中线控制;在轧制大口径厚壁无缝钢管时,外径应按负公差控制,壁厚按正公差控制,能使成品钢管各项尺寸参数达到最终标准要求。","authors":[{"authorName":"张旦天,杨永昌","id":"a787b30f-2b62-4121-82ab-1926e78cd4e9","originalAuthorName":"张旦天,杨永昌"}],"categoryName":"|","doi":"","fpage":"18","id":"d597da38-2713-4176-808a-77a2b1d465a5","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"76df1701-6b71-4612-b929-9d5fed4c1853","keyword":"热轧无缝管 ","originalKeyword":"热轧无缝管 "},{"id":"3709fede-73e9-4694-8e9b-91974466de15","keyword":" heat treatment ","originalKeyword":" heat treatment "},{"id":"497262d3-59b4-455f-8a91-31bb173226b3","keyword":" dimensional change","originalKeyword":" dimensional change"}],"language":"zh","publisherId":"1001-0777_2012_2_13","title":"热处理对无缝钢管尺寸变化的影响","volume":"30","year":"2012"},{"abstractinfo":"基于密度泛函理论(DFT)的第一性原理方法(DMOL3程序),在广义梯度近似(GGA)下计算了(CdS)n(n=9~12)团簇的基态结构、结合能等,研究了(CdS)n团簇的结合能及二次能量差分随尺寸演化的关系,结果表明,n为5和8时,(CdS)n团簇的结构稳定性相对较差;n为6和9时,对应的基态结构稳定性相对较高;通过结合能随尺寸变化关系的研究也体现了小团簇的尺寸效应.","authors":[{"authorName":"徐明","id":"7f65d6de-0ff6-4787-8d77-5e21566171c3","originalAuthorName":"徐明"},{"authorName":"李春霞","id":"d632c94c-58be-4fa5-b4f0-73ea53c15044","originalAuthorName":"李春霞"},{"authorName":"涂林君","id":"b45020a9-cf46-4da0-8236-7a4abdfd9ceb","originalAuthorName":"涂林君"},{"authorName":"黄钘","id":"4a329923-1741-4760-96af-0c611a090fdd","originalAuthorName":"黄钘"},{"authorName":"羊富曼","id":"8eaf2896-faa1-4175-84b8-a4e41ffecb12","originalAuthorName":"羊富曼"}],"doi":"","fpage":"21","id":"8a5432cb-be86-449b-acc5-4be82df9cfcc","issue":"z3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d46f8251-8fd9-463a-bfe9-70cfb0cd5268","keyword":"(CdS)n团簇","originalKeyword":"(CdS)n团簇"},{"id":"d2193d62-421d-44f6-aa7c-c480c0a239e3","keyword":"基态结构","originalKeyword":"基态结构"},{"id":"fbefdff9-4dc1-47a5-aba6-e5ba83476125","keyword":"结合能","originalKeyword":"结合能"}],"language":"zh","publisherId":"cldb2008z3007","title":"中小尺寸CdS团簇的结合能随尺寸变化关系的研究","volume":"22","year":"2008"},{"abstractinfo":"采用集束拉拔技术制备出高强高导Nb管增强Cu-Nb多芯复合线材,样品直径为Φ2.5 mm时,强度接近1.1 GPa,导电率达到74%IACS.选取不同尺寸线径(Φ3.0 mm、Φ2.7 mm、Φ2.5 mm)的复合线材,通过场发射扫描电镜测试手段表征了不同尺寸线材的芯丝形貌、Cu-Nb界面的微观结构,探讨了多尺寸条件下芯丝和界面微观组织的演变规律及特性,最后结合σ-ε曲线图和R-T曲线图,详细分析了尺寸变化所引起线材性能的演变机理.","authors":[{"authorName":"王鹏飞","id":"9da0897a-068a-43bf-a1f9-bc2c2fba9a3a","originalAuthorName":"王鹏飞"},{"authorName":"梁明","id":"178707bc-6676-4356-ae17-d441647a7cce","originalAuthorName":"梁明"},{"authorName":"徐晓燕","id":"8e9b0278-8898-4f1e-8e74-8249576387ed","originalAuthorName":"徐晓燕"},{"authorName":"焦高峰","id":"0ba8789a-1deb-439a-92cd-2d1e1b71d262","originalAuthorName":"焦高峰"},{"authorName":"马小波","id":"30efaf81-7eeb-4deb-9837-0cb7f703365a","originalAuthorName":"马小波"},{"authorName":"卢亚锋","id":"d99746e3-e1cb-4658-bc00-0e07eaed1e68","originalAuthorName":"卢亚锋"},{"authorName":"李成山","id":"0ed10b30-4add-4df4-8732-c2509e323097","originalAuthorName":"李成山"}],"doi":"","fpage":"918","id":"f993d7de-1d69-448e-85f6-80fb01e4a551","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"1cb5495a-fced-4fdf-a6a5-b766a49a5f2a","keyword":"集束拉拔技术","originalKeyword":"集束拉拔技术"},{"id":"bccb60ed-1b83-46f9-ad91-bdfb7f2291fd","keyword":"Nb管","originalKeyword":"Nb管"},{"id":"047273c2-cebb-4b60-9919-a217ed5c4034","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"e0a34d50-3e2d-4ec0-9428-0e66b3cfbeba","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"xyjsclygc201504029","title":"尺寸变化对Cu-Nb-Cu多芯复合线材微观结构及性能影响","volume":"44","year":"2015"},{"abstractinfo":"对于燃烧过程中生成的亚微米颗粒,其一次颗粒的长大过程主要是通过碰撞凝并实现的.本文通过对颗粒的初始分布作出一个合理的正态对数分布的假设,运用矩方法(Moment Method)研究了自由分子区的颗粒在布朗碰撞作用下的颗粒尺寸分布的变化情况.所得到的长时间碰撞凝并结果符合布朗碰撞凝并过程的自保持特性.数值结果还表明,颗粒初始的宽粒径分布会显著提高粒子云的在凝并初期的凝并速率和生成粒子的平均直径,且最终生成的粒子尺寸都是宽分布的.这说明在预报微细颗粒的迁移和长大过程中有必要考虑粒子的宽分布特性.","authors":[{"authorName":"耿珺","id":"c09be1ad-9f41-496f-ae16-a95558f7cff0","originalAuthorName":"耿珺"},{"authorName":"柳朝晖","id":"dc700717-8187-42b0-8b0d-c4ed7cdb4f2d","originalAuthorName":"柳朝晖"},{"authorName":"郑楚光","id":"1ae88e46-19b0-4e5d-b909-9693906e24dc","originalAuthorName":"郑楚光"}],"doi":"","fpage":"109","id":"8e279a65-89bb-453f-a040-32b6962d79be","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b31a0ee3-f73e-4993-9315-eda7539e3920","keyword":"自由分子区","originalKeyword":"自由分子区"},{"id":"6a0f2c60-895c-4bb5-a469-a34c73f73d08","keyword":"布朗碰撞凝并","originalKeyword":"布朗碰撞凝并"},{"id":"b438098e-02eb-4eb7-930f-3258b9fb70a1","keyword":"距方法","originalKeyword":"距方法"}],"language":"zh","publisherId":"gcrwlxb2005z1028","title":"自由分子区布朗凝并作用下的颗粒尺寸分布变化","volume":"26","year":"2005"},{"abstractinfo":"从发射极条宽、发射极条长、基极条数、发射极与基极间距四个方面分析了横向尺寸变化对SiGe HBT高频噪声的影响.结果表明增加发射极条长、基极条数和减小发射极与基极间距可以较为有效地减小晶体管噪声,而减小发射极与基极间距对噪声的改善效果比较显著.发射极与基极间距从1μm减小到0.5μm,2GHz工作频率下最小噪声系数可减小9dB,在0.5GHz工作频率下最小噪声系数可降至1.5dB,2GHz工作频率下最小噪声系数为3dB.","authors":[{"authorName":"高攀","id":"d33017dd-e6ea-4ffe-8970-62d7415eeef1","originalAuthorName":"高攀"},{"authorName":"张万荣","id":"e0c01a69-03f0-42a6-b495-643e38b233df","originalAuthorName":"张万荣"},{"authorName":"邱建军","id":"c7afe204-f857-4022-9e24-afbb0bca76ac","originalAuthorName":"邱建军"},{"authorName":"杨经纬","id":"ba370660-6027-48f6-ad28-15052d740fed","originalAuthorName":"杨经纬"},{"authorName":"金冬月","id":"c8bb2ca6-cd4e-4b8a-87bb-db7083b0d9cc","originalAuthorName":"金冬月"},{"authorName":"谢红云","id":"a14d250a-c092-4559-82a1-fdd63c96663a","originalAuthorName":"谢红云"},{"authorName":"张静","id":"efa5fd3f-b87c-491b-90fb-0a63bb24e0d6","originalAuthorName":"张静"},{"authorName":"张正元","id":"43acf039-2e7d-418a-97cf-c03b5a2b1d35","originalAuthorName":"张正元"},{"authorName":"刘道广","id":"908b5e4a-2da7-42e3-806e-a4e2cdde32a3","originalAuthorName":"刘道广"},{"authorName":"王健安","id":"855cbd73-074a-4157-9696-008a3966f6a4","originalAuthorName":"王健安"},{"authorName":"徐学良","id":"6fc6b198-2a51-4e65-9971-884e002dd8bb","originalAuthorName":"徐学良"}],"doi":"10.3969/j.issn.1007-4252.2007.05.017","fpage":"495","id":"0e1481ee-33ca-4b82-8857-620777f0dd7d","issue":"5","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"3826bf8d-9eae-4355-86c0-a4cd5f98a9e0","keyword":"HBT","originalKeyword":"HBT"},{"id":"e47d8a59-df4f-4ebf-ac14-92e7b01f8a98","keyword":"SiGe","originalKeyword":"SiGe"},{"id":"60197620-e2b2-470d-a9c5-d3151828244b","keyword":"横向尺寸","originalKeyword":"横向尺寸"},{"id":"a7a8ffdb-6cff-4928-b26f-6c25202d72d1","keyword":"高频噪声","originalKeyword":"高频噪声"}],"language":"zh","publisherId":"gnclyqjxb200705017","title":"横向尺寸变化对SiGe HBT高频噪声的影响","volume":"13","year":"2007"},{"abstractinfo":"建立了钛合金薄壁件加热冷却过程中温度场和应力场的数学模型,利用ANSYS软件实现了对钛合金筒形件加热冷却过程中形状尺寸变化及残余应力的预报.结果表明:钛合金筒形件随炉升温至1 050℃,保温700 s后淬火至25℃,直径方向最大相对变形为+1.057%;上下边缘处单元应力状态为张应力,此处的残余应力为389 MPa;淬火过程中工件心部和外表面最大温差为150℃.","authors":[{"authorName":"李延增","id":"ad3fb1f7-3c40-4ed6-b497-6ae35dbe83dd","originalAuthorName":"李延增"},{"authorName":"闫牧夫","id":"589ac269-3d79-4cad-aa38-034ff88e291d","originalAuthorName":"闫牧夫"}],"doi":"10.3969/j.issn.1005-0299.2005.01.006","fpage":"21","id":"428d3576-cc38-41d8-8318-7011404897b5","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"7c441b1b-b4e3-41fc-80ba-9eea30f0a648","keyword":"钛合金薄壁件","originalKeyword":"钛合金薄壁件"},{"id":"6f7e0723-bbee-4fa6-b555-c81f2516b6fe","keyword":"加热","originalKeyword":"加热"},{"id":"eeffe61f-bcdf-4c3e-9a7b-2f971f54e9b7","keyword":"淬火","originalKeyword":"淬火"},{"id":"eb1062fb-1473-462f-a231-22aaf382b530","keyword":"形状尺寸","originalKeyword":"形状尺寸"},{"id":"c3c9bf95-7b37-483b-92e2-42a2cdb39ed6","keyword":"数值预报","originalKeyword":"数值预报"}],"language":"zh","publisherId":"clkxygy200501006","title":"TC4薄壁件热处理过程形状尺寸变化数值预报","volume":"13","year":"2005"},{"abstractinfo":"对单一先驱体、先驱体/惰性填料、先驱体/活性填料体系裂解陶瓷的尺寸变化进行了模型分析.从理论上分析了活性填料体积分数与裂解陶瓷体积收缩率和线收缩率之间的关系.揭示了活性填料的临界体积分数与活性填料反应的产率、反应前后的密度比之间的相关性.以聚碳硅烷先驱体为例.预测了在不同反应情况下,常见活性填料的临界体积分数.增加活性填料体积分数,可降低陶瓷产物的体积收缩率和气孔率.","authors":[{"authorName":"谢征芳","id":"bea43804-fe46-4bc2-8280-29aeffb13fd4","originalAuthorName":"谢征芳"},{"authorName":"陈朝辉","id":"ee83fc63-fd55-474b-91b3-13171ab0a9e9","originalAuthorName":"陈朝辉"}],"categoryName":"|","doi":"","fpage":"443","id":"bc853497-f5d3-4e16-a8d5-31421e27448c","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"0ca1500e-2d3a-4ce1-b1b9-e49715b6f248","keyword":"先驱体陶瓷.活性填料.惰性填料","originalKeyword":"先驱体陶瓷.活性填料.惰性填料"}],"language":"zh","publisherId":"0412-1961_2002_4_10","title":"活性填料控制的先驱体裂解陶瓷的尺寸变化","volume":"38","year":"2002"}],"totalpage":3804,"totalrecord":38035}